November 24, 2015
Thanksgiving greetings from all of us at the Muskingum County Extension Office. I hope you enjoy your holiday and what continues to be a relatively warm fall.

In this email:

- Preliminary winter program dates
 - Coshocton and Muskingum Agronomy School
 - Beef Cattle School
 - Pesticide Recertification Dates
 - Fertilizer Certification Dates
- Giant Ragweed—Why it doesn’t really matter whether Acuron is 2.637% better than Lexar on giant ragweed
- Feeding Winter Hay on Pasture Fields

Sincerely,

Clifton Martin
Extension Educator
Agriculture and Natural Resources
Upcoming dates for winter programs.
More information for all of these programs will be released as we get closer to each date.

Coshocton and Muskingum Counties Agronomy School.
Jan 27. 9 am-3pm. Conesville United Methodist Church. Cost $30.

Ohio Beef Cattle School.
Jan 19, Feb 2, and Feb 16. 7:00 pm. The Ohio Beef Cattle School has been well-received by clientele as a reliable source of information on current topics that are impacting the beef industry. Over the past three years, the School has averaged 21 host locations across Ohio and Indiana. The average nightly participation has been nearly 200 individuals from Ohio, Indiana, Kentucky, Pennsylvania, and West Virginia. We will host at the Muskingum County Office and further details will be forthcoming.

Pesticide Applicator Recertification.
Letters and an official flier will be released from the office in December. Cost for attending a Pesticide Recertification session at the Muskingum County Office will be $35. http://pested.osu.edu/privaterecert.html
Feb 3 10:00 am to 1:00 pm
Feb 18 6:00 pm to 9:00 pm

Fertilizer Applicator Certification.
Additional information will be released in December
Mar 1 11:00 am to 2:00 pm
Mar 7 6:00 pm to 9:00 pm

Why it doesn’t really matter whether Acuron is 2.637% better than Lexar on giant ragweed
Authors: Mark Loux

The number of new herbicide introductions has slowed down over the past couple years, and most of the “new” products are actually just a recombination of existing active ingredients. The 2016 edition of the “Weed Control Guide for Ohio, Indiana, and Illinois” contains information on all but a few of the most recent products. A pdf of the 2016 guide is available at http://u.osu.edu/osuweeds/, along with videos that summarize new products and technology (hard copy of the guide available by mid-December). One of the big questions remaining about 2016 herbicide programs is, still, what will happen with Xtend and Enlist soybeans and the associated herbicides. Dow has an approved product label for Enlist Duo, but not all the necessary export clearances yet for the Enlist soybeans. Monsanto is apparently still working on everything—export clearances and dicamba product label approvals – so who knows where we will be by April of 2016.

One of the persistent questions about new products this year has been - “how much better is Acuron on giant ragweed compared with Lexar?” This question was driven in part by a higher price for Acuron, although apparently this price differential no longer exists. Both Acuron and Lexar contain S-metolachlor (site 15), atrazine (site 5), and mesotrione (site 27). Acuron also contains bicyclopyrone, another site 27 inhibitor that contributes activity on larger-seeded broadleaf weeds such as giant ragweed and cocklebur. The rate of atrazine is lower in Acuron compared with Lexar, but this is presumably offset by the addition of the bicyclopyrone. Acuron was sold in 2015 but was not listed or rated in the weed control guide until this latest edition. (See also this article from Iowa State - http://www.weeds.iastate.edu/mgmt/2015/acuron.pdf.)

Lexar is already a very broad-spectrum herbicide premix, and the two products have essentially identical ratings on grass and broadleaf weeds across the board in the guide. One exception is giant ragweed, where Acuron has rating of “8+” and Lexar has a rating of “8”. The assignment of effectiveness ratings in the guide is the result of discussion among all of the authors. There was just enough research experience among all of us to conclude that Acuron can at times be a little more effective on giant ragweed than Lexar, and deserved a slightly higher rating. OSU weed scientists would have been happy to keep the rating an “8” because we don’t believe any residual herbicide deserves a higher rating on giant ragweed. It’s a large-seeded weed that can germinate from fairly deep in the soil profile and it emerges from March through early July,
which overall limits how effective residual herbicides can be on it. So while a number of residual herbicides can provide 100% control of smaller-seeded broadleaf weeds such as lambsquarters, pigweed, and smartweed, this is near impossible to achieve for giant ragweed. We were not convinced that there is a consistent difference in control between Acuron and Lexar, but we agreed to the “8+” rating for Acuron in the interest of world peace and collegiality, and maintaining harmony with our weed control guide co-authors from Purdue and U. of Illinois, who are a reasonably agreeable group of people most of the time.

Here’s why none of this really matters though. Effective control of giant ragweed almost always requires a combination PRE and POST herbicide treatments. There are several good residual herbicide programs for corn with substantial early-season activity on giant ragweed. Acuron is one of these, along with Lexar, Lumax, and mixtures of atrazine with Corvus, SureStart, Instigate or Balance Flexx. None of these will completely control even a low population of giant ragweed, but when there’s not much giant ragweed to begin with, the number of escapes can be low enough that following with POST herbicides is not economical. It’s a numbers game really, so as soon as areas of higher ragweed density start to occur, the number of escapes increases and even the most effective PRE herbicide program will not be sufficient without a POST follow up. The fact that one of these herbicide programs might be a little better than another then becomes irrelevant, because without a POST treatment they all fail to be effective enough at the end of the season. Giant ragweed populations tend to be somewhat “patchy” in fields also, based on things like soil properties, drainage, and proximity to infested fencerows. So rather than having a low population uniformly dispersed across a field, there is more likely to be widespread areas with almost no ragweed and smaller areas where the population is still moderate to high.

Remember that it’s much easier and economical to get effective giant ragweed control in corn compared with soybeans, especially if the ragweed has any level of resistance to glyphosate and ALS inhibitors. Using the appropriate program in corn for ragweed pays dividends in the following year(s) of soybeans. Giant ragweed does not produce a lot of seed and the seed has a relatively short life in soil, so it’s possible to greatly reduce the population over several years with effective programs. In fields with more than a uniformly sparse population of giant ragweed, factor the cost of a POST treatment into the planning, rather
than using the whole budget on PRE herbicides. Using one of the more effective PRE treatments isn’t a bad idea – just don’t continue to increase money spent on PRE herbicides in hopes of getting by without a POST treatment.

And budget for something besides just glyphosate in the POST treatment, since we are continuing to select for glyphosate resistance in our giant ragweed populations due to glyphosate overuse in corn and soybeans. Likewise, if the PRE herbicide program comes with the guarantee of a “free” POST treatment to control escapes if necessary, insist that the POST treatment be something other than just glyphosate. Otherwise we’re all just continuing to shoot ourselves in the foot. Or feet. Or cutting off our noses to spite our faces. Or looking gift horses in the mouth. Whatever – you get the idea.

Feeding Winter Hay on Pasture Fields

Author, Jeff McCutcheon

As we approach winter I have a question for you. Where do you feed your livestock?
When the grass runs out do you bring them to a barn or facility to feed them? Do you leave them out on pasture and bring the feed to them? The reason for my question is that experienced graziers spend the fall planning their winter feeding programs. Planning to the point of not only what they will feed but also where they will feed the animals.

I do not know the exact percentage, but it should be safe to say that many forage based livestock producers use round bales of hay as their primary stored winter feed. Hay is stored in some central location and then moved to the field for feeding. Quite a few of these producers feed round bales in rings out in the pasture field. Depending on the number of animals to be fed, producers will move bales out to these rings two or three at a time. This requires starting a tractor and moving bales throughout winter and in less than ideal conditions.

Some graziers are using the dry days in fall to place bales where they will do the most good. They are placing bales in protected areas for nasty weather, areas with access to water and even in areas that they want to improve.
I first saw this system demonstrated by the Missouri Forage Systems Research Center and have seen it adapted for many different farms in Ohio. The placement of the bales will depend on each farm, but basically consists of bales set out in fields about 20 to 25 ft apart in rows. The spacing is to allow enough space between bales for livestock to eat. You can use more or less rows depending on the amount of livestock you have and the field you are using.

After you set the bales, a temporary electric fence can be used to exclude the stock for the remainder of the grazing season. When hay feeding begins, the appropriate number of bales is exposed with ring feeders over them and the livestock are allowed access. The number of bales fed depends on the number of animals. Hay should be consumed in two to three days. If it takes longer than that then hay wastage will increase significantly.

Any type of fencing may be used to protect the bales from the livestock during the season. Poly-tape and step-in posts seem to be the fence of choice. This fence can be moved very quickly and is highly visible to the livestock, thus making it very effective. One major consideration in winter is the use of step-in post in frozen ground. A post with a small diameter spike and a broad foot piece will work best in frozen ground with heavy boots.

During winter you could carry a cordless drill to help plant post. Concrete post anchors, using 5-gal buckets as forms, will also work. A piece of 3/16 diameter tube set in the center makes a hole for the step-in post.

The labor required for feeding bales this way is not necessarily less than conventional feeding systems. You still have to move the bales. You just get to spend less time doing it in winter.

Some producers have used this system to improve run down fields. By placing bales for winter feeding they import nutrients and organic matter in the form of manure and wasted hay to areas that need it. Usually they also import seed from the hay.

Are there areas of your pastures that could use extra manure? Can you get to them in winter with a tractor? Would placing bales during dry days in fall make your winter easier?